!C99Shell v. 2.5 [PHP 8 Update] [24.05.2025]!

Software: Apache. PHP/8.1.30 

uname -a: Linux server1.tuhinhossain.com 5.15.0-151-generic #161-Ubuntu SMP Tue Jul 22 14:25:40 UTC
2025 x86_64
 

uid=1002(picotech) gid=1003(picotech) groups=1003(picotech),0(root)  

Safe-mode: OFF (not secure)

/home/picotech/domains/inventory.picotech.app/public_html/node_modules/fflate/lib/   drwxr-xr-x
Free 28.18 GB of 117.98 GB (23.88%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Self remove    Logout    


Viewing file:     index.js (60.6 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
"use strict";
// DEFLATE is a complex format; to read this code, you should probably check the RFC first:
// https://tools.ietf.org/html/rfc1951
// You may also wish to take a look at the guide I made about this program:
// https://gist.github.com/101arrowz/253f31eb5abc3d9275ab943003ffecad
exports.__esModule = true;
exports.unzipSync = exports.unzip = exports.zipSync = exports.zip = exports.strFromU8 = exports.strToU8 = exports.decompressSync = exports.decompress = exports.AsyncDecompress = exports.Decompress = exports.Compress = exports.compressSync = exports.AsyncCompress = exports.compress = exports.unzlibSync = exports.unzlib = exports.AsyncUnzlib = exports.Unzlib = exports.zlibSync = exports.zlib = exports.AsyncZlib = exports.Zlib = exports.gunzipSync = exports.gunzip = exports.AsyncGunzip = exports.Gunzip = exports.gzipSync = exports.gzip = exports.AsyncGzip = exports.Gzip = exports.inflateSync = exports.inflate = exports.AsyncInflate = exports.Inflate = exports.deflateSync = exports.deflate = exports.AsyncDeflate = exports.Deflate = void 0;
// Much of the following code is similar to that of UZIP.js:
// https://github.com/photopea/UZIP.js
// Many optimizations have been made, so the bundle size is ultimately smaller but performance is similar.
// Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint
// is better for memory in most engines (I *think*).
var node_worker_1 = require("./node-worker");
// aliases for shorter compressed code (most minifers don't do this)
var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array;
// fixed length extra bits
var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]);
// fixed distance extra bits
// see fleb note
var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]);
// code length index map
var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]);
// get base, reverse index map from extra bits
var freb = function (eb, start) {
    var b = new u16(31);
    for (var i = 0; i < 31; ++i) {
        b[i] = start += 1 << eb[i - 1];
    }
    // numbers here are at max 18 bits
    var r = new u32(b[30]);
    for (var i = 1; i < 30; ++i) {
        for (var j = b[i]; j < b[i + 1]; ++j) {
            r[j] = ((j - b[i]) << 5) | i;
        }
    }
    return [b, r];
};
var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1];
// we can ignore the fact that the other numbers are wrong; they never happen anyway
fl[28] = 258, revfl[258] = 28;
var _b = freb(fdeb, 0), fd = _b[0], revfd = _b[1];
// map of value to reverse (assuming 16 bits)
var rev = new u16(32768);
for (var i = 0; i < 32768; ++i) {
    // reverse table algorithm from SO
    var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1);
    x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2);
    x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4);
    rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1;
}
// create huffman tree from u8 "map": index -> code length for code index
// mb (max bits) must be at most 15
// TODO: optimize/split up?
var hMap = (function (cd, mb, r) {
    var s = cd.length;
    // index
    var i = 0;
    // u16 "map": index -> # of codes with bit length = index
    var l = new u16(mb);
    // length of cd must be 288 (total # of codes)
    for (; i < s; ++i)
        ++l[cd[i] - 1];
    // u16 "map": index -> minimum code for bit length = index
    var le = new u16(mb);
    for (i = 0; i < mb; ++i) {
        le[i] = (le[i - 1] + l[i - 1]) << 1;
    }
    var co;
    if (r) {
        // u16 "map": index -> number of actual bits, symbol for code
        co = new u16(1 << mb);
        // bits to remove for reverser
        var rvb = 15 - mb;
        for (i = 0; i < s; ++i) {
            // ignore 0 lengths
            if (cd[i]) {
                // num encoding both symbol and bits read
                var sv = (i << 4) | cd[i];
                // free bits
                var r_1 = mb - cd[i];
                // start value
                var v = le[cd[i] - 1]++ << r_1;
                // m is end value
                for (var m = v | ((1 << r_1) - 1); v <= m; ++v) {
                    // every 16 bit value starting with the code yields the same result
                    co[rev[v] >>> rvb] = sv;
                }
            }
        }
    }
    else {
        co = new u16(s);
        for (i = 0; i < s; ++i)
            co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]);
    }
    return co;
});
// fixed length tree
var flt = new u8(288);
for (var i = 0; i < 144; ++i)
    flt[i] = 8;
for (var i = 144; i < 256; ++i)
    flt[i] = 9;
for (var i = 256; i < 280; ++i)
    flt[i] = 7;
for (var i = 280; i < 288; ++i)
    flt[i] = 8;
// fixed distance tree
var fdt = new u8(32);
for (var i = 0; i < 32; ++i)
    fdt[i] = 5;
// fixed length map
var flm = /*#__PURE__*/ hMap(flt, 9, 0), flrm = /*#__PURE__*/ hMap(flt, 9, 1);
// fixed distance map
var fdm = /*#__PURE__*/ hMap(fdt, 5, 0), fdrm = /*#__PURE__*/ hMap(fdt, 5, 1);
// find max of array
var max = function (a) {
    var m = a[0];
    for (var i = 1; i < a.length; ++i) {
        if (a[i] > m)
            m = a[i];
    }
    return m;
};
// read d, starting at bit p and mask with m
var bits = function (d, p, m) {
    var o = (p / 8) >> 0;
    return ((d[o] | (d[o + 1] << 8)) >>> (p & 7)) & m;
};
// read d, starting at bit p continuing for at least 16 bits
var bits16 = function (d, p) {
    var o = (p / 8) >> 0;
    return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16)) >>> (p & 7));
};
// get end of byte
var shft = function (p) { return ((p / 8) >> 0) + (p & 7 && 1); };
// typed array slice - allows garbage collector to free original reference,
// while being more compatible than .slice
var slc = function (v, s, e) {
    if (s == null || s < 0)
        s = 0;
    if (e == null || e > v.length)
        e = v.length;
    // can't use .constructor in case user-supplied
    var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s);
    n.set(v.subarray(s, e));
    return n;
};
// expands raw DEFLATE data
var inflt = function (dat, buf, st) {
    // source length
    var sl = dat.length;
    // have to estimate size
    var noBuf = !buf || st;
    // no state
    var noSt = !st || st.i;
    if (!st)
        st = {};
    // Assumes roughly 33% compression ratio average
    if (!buf)
        buf = new u8(sl * 3);
    // ensure buffer can fit at least l elements
    var cbuf = function (l) {
        var bl = buf.length;
        // need to increase size to fit
        if (l > bl) {
            // Double or set to necessary, whichever is greater
            var nbuf = new u8(Math.max(bl * 2, l));
            nbuf.set(buf);
            buf = nbuf;
        }
    };
    //  last chunk         bitpos           bytes
    var final = st.f || 0, pos = st.p || 0, bt = st.b || 0, lm = st.l, dm = st.d, lbt = st.m, dbt = st.n;
    // total bits
    var tbts = sl * 8;
    do {
        if (!lm) {
            // BFINAL - this is only 1 when last chunk is next
            st.f = final = bits(dat, pos, 1);
            // type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman
            var type = bits(dat, pos + 1, 3);
            pos += 3;
            if (!type) {
                // go to end of byte boundary
                var s = shft(pos) + 4, l = dat[s - 4] | (dat[s - 3] << 8), t = s + l;
                if (t > sl) {
                    if (noSt)
                        throw 'unexpected EOF';
                    break;
                }
                // ensure size
                if (noBuf)
                    cbuf(bt + l);
                // Copy over uncompressed data
                buf.set(dat.subarray(s, t), bt);
                // Get new bitpos, update byte count
                st.b = bt += l, st.p = pos = t * 8;
                continue;
            }
            else if (type == 1)
                lm = flrm, dm = fdrm, lbt = 9, dbt = 5;
            else if (type == 2) {
                //  literal                            lengths
                var hLit = bits(dat, pos, 31) + 257, hcLen = bits(dat, pos + 10, 15) + 4;
                var tl = hLit + bits(dat, pos + 5, 31) + 1;
                pos += 14;
                // length+distance tree
                var ldt = new u8(tl);
                // code length tree
                var clt = new u8(19);
                for (var i = 0; i < hcLen; ++i) {
                    // use index map to get real code
                    clt[clim[i]] = bits(dat, pos + i * 3, 7);
                }
                pos += hcLen * 3;
                // code lengths bits
                var clb = max(clt), clbmsk = (1 << clb) - 1;
                if (!noSt && pos + tl * (clb + 7) > tbts)
                    break;
                // code lengths map
                var clm = hMap(clt, clb, 1);
                for (var i = 0; i < tl;) {
                    var r = clm[bits(dat, pos, clbmsk)];
                    // bits read
                    pos += r & 15;
                    // symbol
                    var s = r >>> 4;
                    // code length to copy
                    if (s < 16) {
                        ldt[i++] = s;
                    }
                    else {
                        //  copy   count
                        var c = 0, n = 0;
                        if (s == 16)
                            n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1];
                        else if (s == 17)
                            n = 3 + bits(dat, pos, 7), pos += 3;
                        else if (s == 18)
                            n = 11 + bits(dat, pos, 127), pos += 7;
                        while (n--)
                            ldt[i++] = c;
                    }
                }
                //    length tree                 distance tree
                var lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit);
                // max length bits
                lbt = max(lt);
                // max dist bits
                dbt = max(dt);
                lm = hMap(lt, lbt, 1);
                dm = hMap(dt, dbt, 1);
            }
            else
                throw 'invalid block type';
            if (pos > tbts)
                throw 'unexpected EOF';
        }
        // Make sure the buffer can hold this + the largest possible addition
        // Maximum chunk size (practically, theoretically infinite) is 2^17;
        if (noBuf)
            cbuf(bt + 131072);
        var lms = (1 << lbt) - 1, dms = (1 << dbt) - 1;
        var mxa = lbt + dbt + 18;
        while (noSt || pos + mxa < tbts) {
            // bits read, code
            var c = lm[bits16(dat, pos) & lms], sym = c >>> 4;
            pos += c & 15;
            if (pos > tbts)
                throw 'unexpected EOF';
            if (!c)
                throw 'invalid length/literal';
            if (sym < 256)
                buf[bt++] = sym;
            else if (sym == 256) {
                lm = null;
                break;
            }
            else {
                var add = sym - 254;
                // no extra bits needed if less
                if (sym > 264) {
                    // index
                    var i = sym - 257, b = fleb[i];
                    add = bits(dat, pos, (1 << b) - 1) + fl[i];
                    pos += b;
                }
                // dist
                var d = dm[bits16(dat, pos) & dms], dsym = d >>> 4;
                if (!d)
                    throw 'invalid distance';
                pos += d & 15;
                var dt = fd[dsym];
                if (dsym > 3) {
                    var b = fdeb[dsym];
                    dt += bits16(dat, pos) & ((1 << b) - 1), pos += b;
                }
                if (pos > tbts)
                    throw 'unexpected EOF';
                if (noBuf)
                    cbuf(bt + 131072);
                var end = bt + add;
                for (; bt < end; bt += 4) {
                    buf[bt] = buf[bt - dt];
                    buf[bt + 1] = buf[bt + 1 - dt];
                    buf[bt + 2] = buf[bt + 2 - dt];
                    buf[bt + 3] = buf[bt + 3 - dt];
                }
                bt = end;
            }
        }
        st.l = lm, st.p = pos, st.b = bt;
        if (lm)
            final = 1, st.m = lbt, st.d = dm, st.n = dbt;
    } while (!final);
    return bt == buf.length ? buf : slc(buf, 0, bt);
};
// starting at p, write the minimum number of bits that can hold v to d
var wbits = function (d, p, v) {
    v <<= p & 7;
    var o = (p / 8) >> 0;
    d[o] |= v;
    d[o + 1] |= v >>> 8;
};
// starting at p, write the minimum number of bits (>8) that can hold v to d
var wbits16 = function (d, p, v) {
    v <<= p & 7;
    var o = (p / 8) >> 0;
    d[o] |= v;
    d[o + 1] |= v >>> 8;
    d[o + 2] |= v >>> 16;
};
// creates code lengths from a frequency table
var hTree = function (d, mb) {
    // Need extra info to make a tree
    var t = [];
    for (var i = 0; i < d.length; ++i) {
        if (d[i])
            t.push({ s: i, f: d[i] });
    }
    var s = t.length;
    var t2 = t.slice();
    if (!s)
        return [new u8(0), 0];
    if (s == 1) {
        var v = new u8(t[0].s + 1);
        v[t[0].s] = 1;
        return [v, 1];
    }
    t.sort(function (a, b) { return a.f - b.f; });
    // after i2 reaches last ind, will be stopped
    // freq must be greater than largest possible number of symbols
    t.push({ s: -1, f: 25001 });
    var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2;
    t[0] = { s: -1, f: l.f + r.f, l: l, r: r };
    // efficient algorithm from UZIP.js
    // i0 is lookbehind, i2 is lookahead - after processing two low-freq
    // symbols that combined have high freq, will start processing i2 (high-freq,
    // non-composite) symbols instead
    // see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/
    while (i1 != s - 1) {
        l = t[t[i0].f < t[i2].f ? i0++ : i2++];
        r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++];
        t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r };
    }
    var maxSym = t2[0].s;
    for (var i = 1; i < s; ++i) {
        if (t2[i].s > maxSym)
            maxSym = t2[i].s;
    }
    // code lengths
    var tr = new u16(maxSym + 1);
    // max bits in tree
    var mbt = ln(t[i1 - 1], tr, 0);
    if (mbt > mb) {
        // more algorithms from UZIP.js
        // TODO: find out how this code works (debt)
        //  ind    debt
        var i = 0, dt = 0;
        //    left            cost
        var lft = mbt - mb, cst = 1 << lft;
        t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; });
        for (; i < s; ++i) {
            var i2_1 = t2[i].s;
            if (tr[i2_1] > mb) {
                dt += cst - (1 << (mbt - tr[i2_1]));
                tr[i2_1] = mb;
            }
            else
                break;
        }
        dt >>>= lft;
        while (dt > 0) {
            var i2_2 = t2[i].s;
            if (tr[i2_2] < mb)
                dt -= 1 << (mb - tr[i2_2]++ - 1);
            else
                ++i;
        }
        for (; i >= 0 && dt; --i) {
            var i2_3 = t2[i].s;
            if (tr[i2_3] == mb) {
                --tr[i2_3];
                ++dt;
            }
        }
        mbt = mb;
    }
    return [new u8(tr), mbt];
};
// get the max length and assign length codes
var ln = function (n, l, d) {
    return n.s == -1
        ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1))
        : (l[n.s] = d);
};
// length codes generation
var lc = function (c) {
    var s = c.length;
    // Note that the semicolon was intentional
    while (s && !c[--s])
        ;
    var cl = new u16(++s);
    //  ind      num         streak
    var cli = 0, cln = c[0], cls = 1;
    var w = function (v) { cl[cli++] = v; };
    for (var i = 1; i <= s; ++i) {
        if (c[i] == cln && i != s)
            ++cls;
        else {
            if (!cln && cls > 2) {
                for (; cls > 138; cls -= 138)
                    w(32754);
                if (cls > 2) {
                    w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305);
                    cls = 0;
                }
            }
            else if (cls > 3) {
                w(cln), --cls;
                for (; cls > 6; cls -= 6)
                    w(8304);
                if (cls > 2)
                    w(((cls - 3) << 5) | 8208), cls = 0;
            }
            while (cls--)
                w(cln);
            cls = 1;
            cln = c[i];
        }
    }
    return [cl.subarray(0, cli), s];
};
// calculate the length of output from tree, code lengths
var clen = function (cf, cl) {
    var l = 0;
    for (var i = 0; i < cl.length; ++i)
        l += cf[i] * cl[i];
    return l;
};
// writes a fixed block
// returns the new bit pos
var wfblk = function (out, pos, dat) {
    // no need to write 00 as type: TypedArray defaults to 0
    var s = dat.length;
    var o = shft(pos + 2);
    out[o] = s & 255;
    out[o + 1] = s >>> 8;
    out[o + 2] = out[o] ^ 255;
    out[o + 3] = out[o + 1] ^ 255;
    for (var i = 0; i < s; ++i)
        out[o + i + 4] = dat[i];
    return (o + 4 + s) * 8;
};
// writes a block
var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) {
    wbits(out, p++, final);
    ++lf[256];
    var _a = hTree(lf, 15), dlt = _a[0], mlb = _a[1];
    var _b = hTree(df, 15), ddt = _b[0], mdb = _b[1];
    var _c = lc(dlt), lclt = _c[0], nlc = _c[1];
    var _d = lc(ddt), lcdt = _d[0], ndc = _d[1];
    var lcfreq = new u16(19);
    for (var i = 0; i < lclt.length; ++i)
        lcfreq[lclt[i] & 31]++;
    for (var i = 0; i < lcdt.length; ++i)
        lcfreq[lcdt[i] & 31]++;
    var _e = hTree(lcfreq, 7), lct = _e[0], mlcb = _e[1];
    var nlcc = 19;
    for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc)
        ;
    var flen = (bl + 5) << 3;
    var ftlen = clen(lf, flt) + clen(df, fdt) + eb;
    var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
    if (flen <= ftlen && flen <= dtlen)
        return wfblk(out, p, dat.subarray(bs, bs + bl));
    var lm, ll, dm, dl;
    wbits(out, p, 1 + (dtlen < ftlen)), p += 2;
    if (dtlen < ftlen) {
        lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt;
        var llm = hMap(lct, mlcb, 0);
        wbits(out, p, nlc - 257);
        wbits(out, p + 5, ndc - 1);
        wbits(out, p + 10, nlcc - 4);
        p += 14;
        for (var i = 0; i < nlcc; ++i)
            wbits(out, p + 3 * i, lct[clim[i]]);
        p += 3 * nlcc;
        var lcts = [lclt, lcdt];
        for (var it = 0; it < 2; ++it) {
            var clct = lcts[it];
            for (var i = 0; i < clct.length; ++i) {
                var len = clct[i] & 31;
                wbits(out, p, llm[len]), p += lct[len];
                if (len > 15)
                    wbits(out, p, (clct[i] >>> 5) & 127), p += clct[i] >>> 12;
            }
        }
    }
    else {
        lm = flm, ll = flt, dm = fdm, dl = fdt;
    }
    for (var i = 0; i < li; ++i) {
        if (syms[i] > 255) {
            var len = (syms[i] >>> 18) & 31;
            wbits16(out, p, lm[len + 257]), p += ll[len + 257];
            if (len > 7)
                wbits(out, p, (syms[i] >>> 23) & 31), p += fleb[len];
            var dst = syms[i] & 31;
            wbits16(out, p, dm[dst]), p += dl[dst];
            if (dst > 3)
                wbits16(out, p, (syms[i] >>> 5) & 8191), p += fdeb[dst];
        }
        else {
            wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
        }
    }
    wbits16(out, p, lm[256]);
    return p + ll[256];
};
// deflate options (nice << 13) | chain
var deo = /*#__PURE__*/ new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]);
// empty
var et = /*#__PURE__*/ new u8(0);
// compresses data into a raw DEFLATE buffer
var dflt = function (dat, lvl, plvl, pre, post, lst) {
    var s = dat.length;
    var o = new u8(pre + s + 5 * (1 + Math.floor(s / 7000)) + post);
    // writing to this writes to the output buffer
    var w = o.subarray(pre, o.length - post);
    var pos = 0;
    if (!lvl || s < 8) {
        for (var i = 0; i <= s; i += 65535) {
            // end
            var e = i + 65535;
            if (e < s) {
                // write full block
                pos = wfblk(w, pos, dat.subarray(i, e));
            }
            else {
                // write final block
                w[i] = lst;
                pos = wfblk(w, pos, dat.subarray(i, s));
            }
        }
    }
    else {
        var opt = deo[lvl - 1];
        var n = opt >>> 13, c = opt & 8191;
        var msk_1 = (1 << plvl) - 1;
        //    prev 2-byte val map    curr 2-byte val map
        var prev = new u16(32768), head = new u16(msk_1 + 1);
        var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1;
        var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; };
        // 24576 is an arbitrary number of maximum symbols per block
        // 424 buffer for last block
        var syms = new u32(25000);
        // length/literal freq   distance freq
        var lf = new u16(288), df = new u16(32);
        //  l/lcnt  exbits  index  l/lind  waitdx  bitpos
        var lc_1 = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0;
        for (; i < s; ++i) {
            // hash value
            var hv = hsh(i);
            // index mod 32768
            var imod = i & 32767;
            // previous index with this value
            var pimod = head[hv];
            prev[imod] = pimod;
            head[hv] = imod;
            // We always should modify head and prev, but only add symbols if
            // this data is not yet processed ("wait" for wait index)
            if (wi <= i) {
                // bytes remaining
                var rem = s - i;
                if ((lc_1 > 7000 || li > 24576) && rem > 423) {
                    pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
                    li = lc_1 = eb = 0, bs = i;
                    for (var j = 0; j < 286; ++j)
                        lf[j] = 0;
                    for (var j = 0; j < 30; ++j)
                        df[j] = 0;
                }
                //  len    dist   chain
                var l = 2, d = 0, ch_1 = c, dif = (imod - pimod) & 32767;
                if (rem > 2 && hv == hsh(i - dif)) {
                    var maxn = Math.min(n, rem) - 1;
                    var maxd = Math.min(32767, i);
                    // max possible length
                    // not capped at dif because decompressors implement "rolling" index population
                    var ml = Math.min(258, rem);
                    while (dif <= maxd && --ch_1 && imod != pimod) {
                        if (dat[i + l] == dat[i + l - dif]) {
                            var nl = 0;
                            for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl)
                                ;
                            if (nl > l) {
                                l = nl, d = dif;
                                // break out early when we reach "nice" (we are satisfied enough)
                                if (nl > maxn)
                                    break;
                                // now, find the rarest 2-byte sequence within this
                                // length of literals and search for that instead.
                                // Much faster than just using the start
                                var mmd = Math.min(dif, nl - 2);
                                var md = 0;
                                for (var j = 0; j < mmd; ++j) {
                                    var ti = (i - dif + j + 32768) & 32767;
                                    var pti = prev[ti];
                                    var cd = (ti - pti + 32768) & 32767;
                                    if (cd > md)
                                        md = cd, pimod = ti;
                                }
                            }
                        }
                        // check the previous match
                        imod = pimod, pimod = prev[imod];
                        dif += (imod - pimod + 32768) & 32767;
                    }
                }
                // d will be nonzero only when a match was found
                if (d) {
                    // store both dist and len data in one Uint32
                    // Make sure this is recognized as a len/dist with 28th bit (2^28)
                    syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d];
                    var lin = revfl[l] & 31, din = revfd[d] & 31;
                    eb += fleb[lin] + fdeb[din];
                    ++lf[257 + lin];
                    ++df[din];
                    wi = i + l;
                    ++lc_1;
                }
                else {
                    syms[li++] = dat[i];
                    ++lf[dat[i]];
                }
            }
        }
        pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos);
        // this is the easiest way to avoid needing to maintain state
        if (!lst)
            pos = wfblk(w, pos, et);
    }
    return slc(o, 0, pre + shft(pos) + post);
};
// CRC32 table
var crct = /*#__PURE__*/ (function () {
    var t = new u32(256);
    for (var i = 0; i < 256; ++i) {
        var c = i, k = 9;
        while (--k)
            c = ((c & 1) && 0xEDB88320) ^ (c >>> 1);
        t[i] = c;
    }
    return t;
})();
// CRC32
var crc = function () {
    var c = 0xFFFFFFFF;
    return {
        p: function (d) {
            // closures have awful performance
            var cr = c;
            for (var i = 0; i < d.length; ++i)
                cr = crct[(cr & 255) ^ d[i]] ^ (cr >>> 8);
            c = cr;
        },
        d: function () { return c ^ 0xFFFFFFFF; }
    };
};
// Alder32
var adler = function () {
    var a = 1, b = 0;
    return {
        p: function (d) {
            // closures have awful performance
            var n = a, m = b;
            var l = d.length;
            for (var i = 0; i != l;) {
                var e = Math.min(i + 5552, l);
                for (; i < e; ++i)
                    n += d[i], m += n;
                n %= 65521, m %= 65521;
            }
            a = n, b = m;
        },
        d: function () { return ((a >>> 8) << 16 | (b & 255) << 8 | (b >>> 8)) + ((a & 255) << 23) * 2; }
    };
};
;
// deflate with opts
var dopt = function (dat, opt, pre, post, st) {
    return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : (12 + opt.mem), pre, post, !st);
};
// Walmart object spread
var mrg = function (a, b) {
    var o = {};
    for (var k in a)
        o[k] = a[k];
    for (var k in b)
        o[k] = b[k];
    return o;
};
// worker clone
// This is possibly the craziest part of the entire codebase, despite how simple it may seem.
// The only parameter to this function is a closure that returns an array of variables outside of the function scope.
// We're going to try to figure out the variable names used in the closure as strings because that is crucial for workerization.
// We will return an object mapping of true variable name to value (basically, the current scope as a JS object).
// The reason we can't just use the original variable names is minifiers mangling the toplevel scope.
// This took me three weeks to figure out how to do.
var wcln = function (fn, fnStr, td) {
    var dt = fn();
    var st = fn.toString();
    var ks = st.slice(st.indexOf('[') + 1, st.lastIndexOf(']')).replace(/ /g, '').split(',');
    for (var i = 0; i < dt.length; ++i) {
        var v = dt[i], k = ks[i];
        if (typeof v == 'function') {
            fnStr += ';' + k + '=';
            var st_1 = v.toString();
            if (v.prototype) {
                // for global objects
                if (st_1.indexOf('[native code]') != -1) {
                    var spInd = st_1.indexOf(' ', 8) + 1;
                    fnStr += st_1.slice(spInd, st_1.indexOf('(', spInd));
                }
                else {
                    fnStr += st_1;
                    for (var t in v.prototype)
                        fnStr += ';' + k + '.prototype.' + t + '=' + v.prototype[t].toString();
                }
            }
            else
                fnStr += st_1;
        }
        else
            td[k] = v;
    }
    return [fnStr, td];
};
var ch = [];
// clone bufs
var cbfs = function (v) {
    var tl = [];
    for (var k in v) {
        if (v[k] instanceof u8 || v[k] instanceof u16 || v[k] instanceof u32)
            tl.push((v[k] = new v[k].constructor(v[k])).buffer);
    }
    return tl;
};
// use a worker to execute code
var wrkr = function (fns, init, id, cb) {
    var _a;
    if (!ch[id]) {
        var fnStr = '', td_1 = {}, m = fns.length - 1;
        for (var i = 0; i < m; ++i)
            _a = wcln(fns[i], fnStr, td_1), fnStr = _a[0], td_1 = _a[1];
        ch[id] = wcln(fns[m], fnStr, td_1);
    }
    var td = mrg({}, ch[id][1]);
    return node_worker_1["default"](ch[id][0] + ';onmessage=function(e){for(var k in e.data)self[k]=e.data[k];onmessage=' + init.toString() + '}', id, td, cbfs(td), cb);
};
// base async inflate fn
var bInflt = function () { return [u8, u16, u32, fleb, fdeb, clim, fl, fd, flrm, fdrm, rev, hMap, max, bits, bits16, shft, slc, inflt, inflateSync, pbf, gu8]; };
var bDflt = function () { return [u8, u16, u32, fleb, fdeb, clim, revfl, revfd, flm, flt, fdm, fdt, rev, deo, et, hMap, wbits, wbits16, hTree, ln, lc, clen, wfblk, wblk, shft, slc, dflt, dopt, deflateSync, pbf]; };
// gzip extra
var gze = function () { return [gzh, gzhl, wbytes, crc, crct]; };
// gunzip extra
var guze = function () { return [gzs, gzl]; };
// zlib extra
var zle = function () { return [zlh, wbytes, adler]; };
// unzlib extra
var zule = function () { return [zlv]; };
// post buf
var pbf = function (msg) { return postMessage(msg, [msg.buffer]); };
// get u8
var gu8 = function (o) { return o && o.size && new u8(o.size); };
// async helper
var cbify = function (dat, opts, fns, init, id, cb) {
    var w = wrkr(fns, init, id, function (err, dat) {
        w.terminate();
        cb(err, dat);
    });
    if (!opts.consume)
        dat = new u8(dat);
    w.postMessage([dat, opts], [dat.buffer]);
    return function () { w.terminate(); };
};
// auto stream
var astrm = function (strm) {
    strm.ondata = function (dat, final) { return postMessage([dat, final], [dat.buffer]); };
    return function (ev) { return strm.push(ev.data[0], ev.data[1]); };
};
// async stream attach
var astrmify = function (fns, strm, opts, init, id) {
    var t;
    var w = wrkr(fns, init, id, function (err, dat) {
        if (err)
            w.terminate(), strm.ondata.call(strm, err);
        else {
            if (dat[1])
                w.terminate();
            strm.ondata.call(strm, err, dat[0], dat[1]);
        }
    });
    w.postMessage(opts);
    strm.push = function (d, f) {
        if (t)
            throw 'stream finished';
        if (!strm.ondata)
            throw 'no stream handler';
        w.postMessage([d, t = f], [d.buffer]);
    };
    strm.terminate = function () { w.terminate(); };
};
// read 2 bytes
var b2 = function (d, b) { return d[b] | (d[b + 1] << 8); };
// read 4 bytes
var b4 = function (d, b) { return (d[b] | (d[b + 1] << 8) | (d[b + 2] << 16)) + (d[b + 3] << 23) * 2; };
// write bytes
var wbytes = function (d, b, v) {
    for (; v; ++b)
        d[b] = v, v >>>= 8;
};
// gzip header
var gzh = function (c, o) {
    var fn = o.filename;
    c[0] = 31, c[1] = 139, c[2] = 8, c[8] = o.level < 2 ? 4 : o.level == 9 ? 2 : 0, c[9] = 3; // assume Unix
    if (o.mtime != 0)
        wbytes(c, 4, Math.floor(new Date(o.mtime || Date.now()) / 1000));
    if (fn) {
        c[3] = 8;
        for (var i = 0; i <= fn.length; ++i)
            c[i + 10] = fn.charCodeAt(i);
    }
};
// gzip footer: -8 to -4 = CRC, -4 to -0 is length
// gzip start
var gzs = function (d) {
    if (d[0] != 31 || d[1] != 139 || d[2] != 8)
        throw 'invalid gzip data';
    var flg = d[3];
    var st = 10;
    if (flg & 4)
        st += d[10] | (d[11] << 8) + 2;
    for (var zs = (flg >> 3 & 1) + (flg >> 4 & 1); zs > 0; zs -= !d[st++])
        ;
    return st + (flg & 2);
};
// gzip length
var gzl = function (d) {
    var l = d.length;
    return (d[l - 4] | d[l - 3] << 8 | d[l - 2] << 16) + (2 * (d[l - 1] << 23));
};
// gzip header length
var gzhl = function (o) { return 10 + ((o.filename && (o.filename.length + 1)) || 0); };
// zlib header
var zlh = function (c, o) {
    var lv = o.level, fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2;
    c[0] = 120, c[1] = (fl << 6) | (fl ? (32 - 2 * fl) : 1);
};
// zlib valid
var zlv = function (d) {
    if ((d[0] & 15) != 8 || (d[0] >>> 4) > 7 || ((d[0] << 8 | d[1]) % 31))
        throw 'invalid zlib data';
    if (d[1] & 32)
        throw 'invalid zlib data: preset dictionaries not supported';
};
function AsyncCmpStrm(opts, cb) {
    if (!cb && typeof opts == 'function')
        cb = opts, opts = {};
    this.ondata = cb;
    return opts;
}
// zlib footer: -4 to -0 is Adler32
/**
 * Streaming DEFLATE compression
 */
var Deflate = /*#__PURE__*/ (function () {
    function Deflate(opts, cb) {
        if (!cb && typeof opts == 'function')
            cb = opts, opts = {};
        this.ondata = cb;
        this.o = opts || {};
    }
    Deflate.prototype.p = function (c, f) {
        this.ondata(dopt(c, this.o, 0, 0, !f), f);
    };
    /**
     * Pushes a chunk to be deflated
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */
    Deflate.prototype.push = function (chunk, final) {
        if (this.d)
            throw 'stream finished';
        if (!this.ondata)
            throw 'no stream handler';
        this.d = final;
        this.p(chunk, final || false);
    };
    return Deflate;
}());
exports.Deflate = Deflate;
/**
 * Asynchronous streaming DEFLATE compression
 */
var AsyncDeflate = /*#__PURE__*/ (function () {
    function AsyncDeflate(opts, cb) {
        astrmify([
            bDflt,
            function () { return [astrm, Deflate]; }
        ], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
            var strm = new Deflate(ev.data);
            onmessage = astrm(strm);
        }, 6);
    }
    return AsyncDeflate;
}());
exports.AsyncDeflate = AsyncDeflate;
function deflate(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    return cbify(data, opts, [
        bDflt,
    ], function (ev) { return pbf(deflateSync(ev.data[0], ev.data[1])); }, 0, cb);
}
exports.deflate = deflate;
/**
 * Compresses data with DEFLATE without any wrapper
 * @param data The data to compress
 * @param opts The compression options
 * @returns The deflated version of the data
 */
function deflateSync(data, opts) {
    if (opts === void 0) { opts = {}; }
    return dopt(data, opts, 0, 0);
}
exports.deflateSync = deflateSync;
/**
 * Streaming DEFLATE decompression
 */
var Inflate = /*#__PURE__*/ (function () {
    /**
     * Creates an inflation stream
     * @param cb The callback to call whenever data is inflated
     */
    function Inflate(cb) {
        this.s = {};
        this.p = new u8(0);
        this.ondata = cb;
    }
    Inflate.prototype.e = function (c) {
        if (this.d)
            throw 'stream finished';
        if (!this.ondata)
            throw 'no stream handler';
        var l = this.p.length;
        var n = new u8(l + c.length);
        n.set(this.p), n.set(c, l), this.p = n;
    };
    Inflate.prototype.c = function (final) {
        this.d = this.s.i = final || false;
        var bts = this.s.b;
        var dt = inflt(this.p, this.o, this.s);
        this.ondata(slc(dt, bts, this.s.b), this.d);
        this.o = slc(dt, this.s.b - 32768), this.s.b = this.o.length;
        this.p = slc(this.p, (this.s.p / 8) >> 0), this.s.p &= 7;
    };
    /**
     * Pushes a chunk to be inflated
     * @param chunk The chunk to push
     * @param final Whether this is the final chunk
     */
    Inflate.prototype.push = function (chunk, final) {
        this.e(chunk), this.c(final);
    };
    return Inflate;
}());
exports.Inflate = Inflate;
/**
 * Asynchronous streaming DEFLATE decompression
 */
var AsyncInflate = /*#__PURE__*/ (function () {
    /**
     * Creates an asynchronous inflation stream
     * @param cb The callback to call whenever data is deflated
     */
    function AsyncInflate(cb) {
        this.ondata = cb;
        astrmify([
            bInflt,
            function () { return [astrm, Inflate]; }
        ], this, 0, function () {
            var strm = new Inflate();
            onmessage = astrm(strm);
        }, 7);
    }
    return AsyncInflate;
}());
exports.AsyncInflate = AsyncInflate;
function inflate(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    return cbify(data, opts, [
        bInflt
    ], function (ev) { return pbf(inflateSync(ev.data[0], gu8(ev.data[1]))); }, 1, cb);
}
exports.inflate = inflate;
/**
 * Expands DEFLATE data with no wrapper
 * @param data The data to decompress
 * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
 * @returns The decompressed version of the data
 */
function inflateSync(data, out) {
    return inflt(data, out);
}
exports.inflateSync = inflateSync;
// before you yell at me for not just using extends, my reason is that TS inheritance is hard to workerize.
/**
 * Streaming GZIP compression
 */
var Gzip = /*#__PURE__*/ (function () {
    function Gzip(opts, cb) {
        this.c = crc();
        this.l = 0;
        this.v = 1;
        Deflate.call(this, opts, cb);
    }
    /**
     * Pushes a chunk to be GZIPped
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */
    Gzip.prototype.push = function (chunk, final) {
        Deflate.prototype.push.call(this, chunk, final);
    };
    Gzip.prototype.p = function (c, f) {
        this.c.p(c);
        this.l += c.length;
        var raw = dopt(c, this.o, this.v && gzhl(this.o), f && 8, !f);
        if (this.v)
            gzh(raw, this.o), this.v = 0;
        if (f)
            wbytes(raw, raw.length - 8, this.c.d()), wbytes(raw, raw.length - 4, this.l);
        this.ondata(raw, f);
    };
    return Gzip;
}());
exports.Gzip = Gzip;
exports.Compress = Gzip;
/**
 * Asynchronous streaming GZIP compression
 */
var AsyncGzip = /*#__PURE__*/ (function () {
    function AsyncGzip(opts, cb) {
        astrmify([
            bDflt,
            gze,
            function () { return [astrm, Deflate, Gzip]; }
        ], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
            var strm = new Gzip(ev.data);
            onmessage = astrm(strm);
        }, 8);
    }
    return AsyncGzip;
}());
exports.AsyncGzip = AsyncGzip;
exports.AsyncCompress = AsyncGzip;
function gzip(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    return cbify(data, opts, [
        bDflt,
        gze,
        function () { return [gzipSync]; }
    ], function (ev) { return pbf(gzipSync(ev.data[0], ev.data[1])); }, 2, cb);
}
exports.gzip = gzip;
exports.compress = gzip;
/**
 * Compresses data with GZIP
 * @param data The data to compress
 * @param opts The compression options
 * @returns The gzipped version of the data
 */
function gzipSync(data, opts) {
    if (opts === void 0) { opts = {}; }
    var c = crc(), l = data.length;
    c.p(data);
    var d = dopt(data, opts, gzhl(opts), 8), s = d.length;
    return gzh(d, opts), wbytes(d, s - 8, c.d()), wbytes(d, s - 4, l), d;
}
exports.gzipSync = gzipSync;
exports.compressSync = gzipSync;
/**
 * Streaming GZIP decompression
 */
var Gunzip = /*#__PURE__*/ (function () {
    /**
     * Creates a GUNZIP stream
     * @param cb The callback to call whenever data is inflated
     */
    function Gunzip(cb) {
        this.v = 1;
        Inflate.call(this, cb);
    }
    /**
     * Pushes a chunk to be GUNZIPped
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */
    Gunzip.prototype.push = function (chunk, final) {
        Inflate.prototype.e.call(this, chunk);
        if (this.v) {
            var s = gzs(this.p);
            if (s >= this.p.length && !final)
                return;
            this.p = this.p.subarray(s), this.v = 0;
        }
        if (final) {
            if (this.p.length < 8)
                throw 'invalid gzip stream';
            this.p = this.p.subarray(0, -8);
        }
        // necessary to prevent TS from using the closure value
        // This allows for workerization to function correctly
        Inflate.prototype.c.call(this, final);
    };
    return Gunzip;
}());
exports.Gunzip = Gunzip;
/**
 * Asynchronous streaming GZIP decompression
 */
var AsyncGunzip = /*#__PURE__*/ (function () {
    /**
     * Creates an asynchronous GUNZIP stream
     * @param cb The callback to call whenever data is deflated
     */
    function AsyncGunzip(cb) {
        this.ondata = cb;
        astrmify([
            bInflt,
            guze,
            function () { return [astrm, Inflate, Gunzip]; }
        ], this, 0, function () {
            var strm = new Gunzip();
            onmessage = astrm(strm);
        }, 9);
    }
    return AsyncGunzip;
}());
exports.AsyncGunzip = AsyncGunzip;
function gunzip(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    return cbify(data, opts, [
        bInflt,
        guze,
        function () { return [gunzipSync]; }
    ], function (ev) { return pbf(gunzipSync(ev.data[0])); }, 3, cb);
}
exports.gunzip = gunzip;
/**
 * Expands GZIP data
 * @param data The data to decompress
 * @param out Where to write the data. GZIP already encodes the output size, so providing this doesn't save memory.
 * @returns The decompressed version of the data
 */
function gunzipSync(data, out) {
    return inflt(data.subarray(gzs(data), -8), out || new u8(gzl(data)));
}
exports.gunzipSync = gunzipSync;
/**
 * Streaming Zlib compression
 */
var Zlib = /*#__PURE__*/ (function () {
    function Zlib(opts, cb) {
        this.c = adler();
        this.v = 1;
        Deflate.call(this, opts, cb);
    }
    /**
     * Pushes a chunk to be zlibbed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */
    Zlib.prototype.push = function (chunk, final) {
        Deflate.prototype.push.call(this, chunk, final);
    };
    Zlib.prototype.p = function (c, f) {
        this.c.p(c);
        var raw = dopt(c, this.o, this.v && 2, f && 4, !f);
        if (this.v)
            zlh(raw, this.o), this.v = 0;
        if (f)
            wbytes(raw, raw.length - 4, this.c.d());
        this.ondata(raw, f);
    };
    return Zlib;
}());
exports.Zlib = Zlib;
/**
 * Asynchronous streaming Zlib compression
 */
var AsyncZlib = /*#__PURE__*/ (function () {
    function AsyncZlib(opts, cb) {
        astrmify([
            bDflt,
            zle,
            function () { return [astrm, Deflate, Zlib]; }
        ], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
            var strm = new Zlib(ev.data);
            onmessage = astrm(strm);
        }, 10);
    }
    return AsyncZlib;
}());
exports.AsyncZlib = AsyncZlib;
function zlib(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    return cbify(data, opts, [
        bDflt,
        zle,
        function () { return [zlibSync]; }
    ], function (ev) { return pbf(zlibSync(ev.data[0], ev.data[1])); }, 4, cb);
}
exports.zlib = zlib;
/**
 * Compress data with Zlib
 * @param data The data to compress
 * @param opts The compression options
 * @returns The zlib-compressed version of the data
 */
function zlibSync(data, opts) {
    if (opts === void 0) { opts = {}; }
    var a = adler();
    a.p(data);
    var d = dopt(data, opts, 2, 4);
    return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d;
}
exports.zlibSync = zlibSync;
/**
 * Streaming Zlib decompression
 */
var Unzlib = /*#__PURE__*/ (function () {
    /**
     * Creates a Zlib decompression stream
     * @param cb The callback to call whenever data is inflated
     */
    function Unzlib(cb) {
        this.v = 1;
        Inflate.call(this, cb);
    }
    /**
     * Pushes a chunk to be unzlibbed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */
    Unzlib.prototype.push = function (chunk, final) {
        Inflate.prototype.e.call(this, chunk);
        if (this.v) {
            if (this.p.length < 2 && !final)
                return;
            this.p = this.p.subarray(2), this.v = 0;
        }
        if (final) {
            if (this.p.length < 4)
                throw 'invalid zlib stream';
            this.p = this.p.subarray(0, -4);
        }
        // necessary to prevent TS from using the closure value
        // This allows for workerization to function correctly
        Inflate.prototype.c.call(this, final);
    };
    return Unzlib;
}());
exports.Unzlib = Unzlib;
/**
 * Asynchronous streaming Zlib decompression
 */
var AsyncUnzlib = /*#__PURE__*/ (function () {
    /**
     * Creates an asynchronous Zlib decompression stream
     * @param cb The callback to call whenever data is deflated
     */
    function AsyncUnzlib(cb) {
        this.ondata = cb;
        astrmify([
            bInflt,
            zule,
            function () { return [astrm, Inflate, Unzlib]; }
        ], this, 0, function () {
            var strm = new Unzlib();
            onmessage = astrm(strm);
        }, 11);
    }
    return AsyncUnzlib;
}());
exports.AsyncUnzlib = AsyncUnzlib;
function unzlib(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    return cbify(data, opts, [
        bInflt,
        zule,
        function () { return [unzlibSync]; }
    ], function (ev) { return pbf(unzlibSync(ev.data[0], gu8(ev.data[1]))); }, 5, cb);
}
exports.unzlib = unzlib;
/**
 * Expands Zlib data
 * @param data The data to decompress
 * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
 * @returns The decompressed version of the data
 */
function unzlibSync(data, out) {
    return inflt((zlv(data), data.subarray(2, -4)), out);
}
exports.unzlibSync = unzlibSync;
/**
 * Streaming GZIP, Zlib, or raw DEFLATE decompression
 */
var Decompress = /*#__PURE__*/ (function () {
    /**
     * Creates a decompression stream
     * @param cb The callback to call whenever data is decompressed
     */
    function Decompress(cb) {
        this.G = Gunzip;
        this.I = Inflate;
        this.Z = Unzlib;
        this.ondata = cb;
    }
    /**
     * Pushes a chunk to be decompressed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */
    Decompress.prototype.push = function (chunk, final) {
        if (!this.ondata)
            throw 'no stream handler';
        if (!this.s) {
            if (this.p && this.p.length) {
                var n = new u8(this.p.length + chunk.length);
                n.set(this.p), n.set(chunk, this.p.length);
            }
            else
                this.p = chunk;
            if (this.p.length > 2) {
                var _this_1 = this;
                var cb = function () { _this_1.ondata.apply(_this_1, arguments); };
                this.s = (this.p[0] == 31 && this.p[1] == 139 && this.p[2] == 8)
                    ? new this.G(cb)
                    : ((this.p[0] & 15) != 8 || (this.p[0] >> 4) > 7 || ((this.p[0] << 8 | this.p[1]) % 31))
                        ? new this.I(cb)
                        : new this.Z(cb);
                this.s.push(this.p, final);
                this.p = null;
            }
        }
        else
            this.s.push(chunk, final);
    };
    return Decompress;
}());
exports.Decompress = Decompress;
/**
 * Asynchronous streaming GZIP, Zlib, or raw DEFLATE decompression
 */
var AsyncDecompress = /*#__PURE__*/ (function () {
    /**
   * Creates an asynchronous decompression stream
   * @param cb The callback to call whenever data is decompressed
   */
    function AsyncDecompress(cb) {
        this.G = AsyncGunzip;
        this.I = AsyncInflate;
        this.Z = AsyncUnzlib;
        this.ondata = cb;
    }
    /**
     * Pushes a chunk to be decompressed
     * @param chunk The chunk to push
     * @param final Whether this is the last chunk
     */
    AsyncDecompress.prototype.push = function (chunk, final) {
        Decompress.prototype.push.call(this, chunk, final);
    };
    return AsyncDecompress;
}());
exports.AsyncDecompress = AsyncDecompress;
function decompress(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    return (data[0] == 31 && data[1] == 139 && data[2] == 8)
        ? gunzip(data, opts, cb)
        : ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31))
            ? inflate(data, opts, cb)
            : unzlib(data, opts, cb);
}
exports.decompress = decompress;
/**
 * Expands compressed GZIP, Zlib, or raw DEFLATE data, automatically detecting the format
 * @param data The data to decompress
 * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
 * @returns The decompressed version of the data
 */
function decompressSync(data, out) {
    return (data[0] == 31 && data[1] == 139 && data[2] == 8)
        ? gunzipSync(data, out)
        : ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31))
            ? inflateSync(data, out)
            : unzlibSync(data, out);
}
exports.decompressSync = decompressSync;
// flatten a directory structure
var fltn = function (d, p, t, o) {
    for (var k in d) {
        var val = d[k], n = p + k;
        if (val instanceof u8)
            t[n] = [val, o];
        else if (Array.isArray(val))
            t[n] = [val[0], mrg(o, val[1])];
        else
            fltn(val, n + '/', t, o);
    }
};
/**
 * Converts a string into a Uint8Array for use with compression/decompression methods
 * @param str The string to encode
 * @param latin1 Whether or not to interpret the data as Latin-1. This should
 *               not need to be true unless decoding a binary string.
 * @returns The string encoded in UTF-8/Latin-1 binary
 */
function strToU8(str, latin1) {
    var l = str.length;
    if (!latin1 && typeof TextEncoder != 'undefined')
        return new TextEncoder().encode(str);
    var ar = new u8(str.length + (str.length >>> 1));
    var ai = 0;
    var w = function (v) { ar[ai++] = v; };
    for (var i = 0; i < l; ++i) {
        if (ai + 5 > ar.length) {
            var n = new u8(ai + 8 + ((l - i) << 1));
            n.set(ar);
            ar = n;
        }
        var c = str.charCodeAt(i);
        if (c < 128 || latin1)
            w(c);
        else if (c < 2048)
            w(192 | (c >>> 6)), w(128 | (c & 63));
        else if (c > 55295 && c < 57344)
            c = 65536 + (c & 1023 << 10) | (str.charCodeAt(++i) & 1023),
                w(240 | (c >>> 18)), w(128 | ((c >>> 12) & 63)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
        else
            w(224 | (c >>> 12)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
    }
    return slc(ar, 0, ai);
}
exports.strToU8 = strToU8;
/**
 * Converts a Uint8Array to a string
 * @param dat The data to decode to string
 * @param latin1 Whether or not to interpret the data as Latin-1. This should
 *               not need to be true unless encoding to binary string.
 * @returns The original UTF-8/Latin-1 string
 */
function strFromU8(dat, latin1) {
    var r = '';
    if (!latin1 && typeof TextDecoder != 'undefined')
        return new TextDecoder().decode(dat);
    for (var i = 0; i < dat.length;) {
        var c = dat[i++];
        if (c < 128 || latin1)
            r += String.fromCharCode(c);
        else if (c < 224)
            r += String.fromCharCode((c & 31) << 6 | (dat[i++] & 63));
        else if (c < 240)
            r += String.fromCharCode((c & 15) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63));
        else
            c = ((c & 15) << 18 | (dat[i++] & 63) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)) - 65536,
                r += String.fromCharCode(55296 | (c >> 10), 56320 | (c & 1023));
    }
    return r;
}
exports.strFromU8 = strFromU8;
;
// skip local zip header
var slzh = function (d, b) { return b + 30 + b2(d, b + 26) + b2(d, b + 28); };
// read zip header
var zh = function (d, b, z) {
    var fnl = b2(d, b + 28), fn = strFromU8(d.subarray(b + 46, b + 46 + fnl), !(b2(d, b + 8) & 2048)), es = b + 46 + fnl;
    var _a = z ? z64e(d, es) : [b4(d, b + 20), b4(d, b + 24), b4(d, b + 42)], sc = _a[0], su = _a[1], off = _a[2];
    return [b2(d, b + 10), sc, su, fn, es + b2(d, b + 30) + b2(d, b + 32), off];
};
// read zip64 extra field
var z64e = function (d, b) {
    for (; b2(d, b) != 1; b += 4 + b2(d, b + 2))
        ;
    return [b4(d, b + 12), b4(d, b + 4), b4(d, b + 20)];
};
// write zip header
var wzh = function (d, b, c, cmp, su, fn, u, o, ce, t) {
    var fl = fn.length, l = cmp.length;
    wbytes(d, b, ce != null ? 0x2014B50 : 0x4034B50), b += 4;
    if (ce != null)
        d[b] = 20, b += 2;
    d[b] = 20, b += 2; // spec compliance? what's that?
    d[b++] = (t == 8 && (o.level == 1 ? 6 : o.level < 6 ? 4 : o.level == 9 ? 2 : 0)), d[b++] = u && 8;
    d[b] = t, b += 2;
    var dt = new Date(o.mtime || Date.now()), y = dt.getFullYear() - 1980;
    if (y < 0 || y > 119)
        throw 'date not in range 1980-2099';
    wbytes(d, b, ((y << 24) * 2) | ((dt.getMonth() + 1) << 21) | (dt.getDate() << 16) | (dt.getHours() << 11) | (dt.getMinutes() << 5) | (dt.getSeconds() >>> 1));
    b += 4;
    wbytes(d, b, c);
    wbytes(d, b + 4, l);
    wbytes(d, b + 8, su);
    wbytes(d, b + 12, fl), b += 16; // skip extra field, comment
    if (ce != null)
        wbytes(d, b += 10, ce), b += 4;
    d.set(fn, b);
    b += fl;
    if (ce == null)
        d.set(cmp, b);
};
// write zip footer (end of central directory)
var wzf = function (o, b, c, d, e) {
    wbytes(o, b, 0x6054B50); // skip disk
    wbytes(o, b + 8, c);
    wbytes(o, b + 10, c);
    wbytes(o, b + 12, d);
    wbytes(o, b + 16, e);
};
function zip(data, opts, cb) {
    if (!cb)
        cb = opts, opts = {};
    if (typeof cb != 'function')
        throw 'no callback';
    var r = {};
    fltn(data, '', r, opts);
    var k = Object.keys(r);
    var lft = k.length, o = 0, tot = 0;
    var slft = lft, files = new Array(lft);
    var term = [];
    var tAll = function () {
        for (var i = 0; i < term.length; ++i)
            term[i]();
    };
    var cbf = function () {
        var out = new u8(tot + 22), oe = o, cdl = tot - o;
        tot = 0;
        for (var i = 0; i < slft; ++i) {
            var f = files[i];
            try {
                wzh(out, tot, f.c, f.d, f.m, f.n, f.u, f.p, null, f.t);
                wzh(out, o, f.c, f.d, f.m, f.n, f.u, f.p, tot, f.t), o += 46 + f.n.length, tot += 30 + f.n.length + f.d.length;
            }
            catch (e) {
                return cb(e, null);
            }
        }
        wzf(out, o, files.length, cdl, oe);
        cb(null, out);
    };
    if (!lft)
        cbf();
    var _loop_1 = function (i) {
        var fn = k[i];
        var _a = r[fn], file = _a[0], p = _a[1];
        var c = crc(), m = file.length;
        c.p(file);
        var n = strToU8(fn), s = n.length;
        var t = p.level == 0 ? 0 : 8;
        var cbl = function (e, d) {
            if (e) {
                tAll();
                cb(e, null);
            }
            else {
                var l = d.length;
                files[i] = {
                    t: t,
                    d: d,
                    m: m,
                    c: c.d(),
                    u: fn.length != l,
                    n: n,
                    p: p
                };
                o += 30 + s + l;
                tot += 76 + 2 * s + l;
                if (!--lft)
                    cbf();
            }
        };
        if (n.length > 65535)
            cbl('filename too long', null);
        if (!t)
            cbl(null, file);
        else if (m < 160000) {
            try {
                cbl(null, deflateSync(file, p));
            }
            catch (e) {
                cbl(e, null);
            }
        }
        else
            term.push(deflate(file, p, cbl));
    };
    // Cannot use lft because it can decrease
    for (var i = 0; i < slft; ++i) {
        _loop_1(i);
    }
    return tAll;
}
exports.zip = zip;
/**
 * Synchronously creates a ZIP file. Prefer using `zip` for better performance
 * with more than one file.
 * @param data The directory structure for the ZIP archive
 * @param opts The main options, merged with per-file options
 * @returns The generated ZIP archive
 */
function zipSync(data, opts) {
    if (opts === void 0) { opts = {}; }
    var r = {};
    var files = [];
    fltn(data, '', r, opts);
    var o = 0;
    var tot = 0;
    for (var fn in r) {
        var _a = r[fn], file = _a[0], p = _a[1];
        var t = p.level == 0 ? 0 : 8;
        var n = strToU8(fn), s = n.length;
        if (n.length > 65535)
            throw 'filename too long';
        var d = t ? deflateSync(file, p) : file, l = d.length;
        var c = crc();
        c.p(file);
        files.push({
            t: t,
            d: d,
            m: file.length,
            c: c.d(),
            u: fn.length != s,
            n: n,
            o: o,
            p: p
        });
        o += 30 + s + l;
        tot += 76 + 2 * s + l;
    }
    var out = new u8(tot + 22), oe = o, cdl = tot - o;
    for (var i = 0; i < files.length; ++i) {
        var f = files[i];
        wzh(out, f.o, f.c, f.d, f.m, f.n, f.u, f.p, null, f.t);
        wzh(out, o, f.c, f.d, f.m, f.n, f.u, f.p, f.o, f.t), o += 46 + f.n.length;
    }
    wzf(out, o, files.length, cdl, oe);
    return out;
}
exports.zipSync = zipSync;
/**
 * Asynchronously decompresses a ZIP archive
 * @param data The raw compressed ZIP file
 * @param cb The callback to call with the decompressed files
 * @returns A function that can be used to immediately terminate the unzipping
 */
function unzip(data, cb) {
    if (typeof cb != 'function')
        throw 'no callback';
    var term = [];
    var tAll = function () {
        for (var i = 0; i < term.length; ++i)
            term[i]();
    };
    var files = {};
    var e = data.length - 22;
    for (; b4(data, e) != 0x6054B50; --e) {
        if (!e || data.length - e > 65558) {
            cb('invalid zip file', null);
            return;
        }
    }
    ;
    var lft = b2(data, e + 8);
    if (!lft)
        cb(null, {});
    var c = lft;
    var o = b4(data, e + 16);
    var z = o == 4294967295;
    if (z) {
        e = b4(data, e - 12);
        if (b4(data, e) != 0x6064B50)
            throw 'invalid zip file';
        c = lft = b4(data, e + 32);
        o = b4(data, e + 48);
    }
    var _loop_2 = function (i) {
        var _a = zh(data, o, z), c_1 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off);
        o = no;
        var cbl = function (e, d) {
            if (e) {
                tAll();
                cb(e, null);
            }
            else {
                files[fn] = d;
                if (!--lft)
                    cb(null, files);
            }
        };
        if (!c_1)
            cbl(null, slc(data, b, b + sc));
        else if (c_1 == 8) {
            var infl = data.subarray(b, b + sc);
            if (sc < 320000) {
                try {
                    cbl(null, inflateSync(infl, new u8(su)));
                }
                catch (e) {
                    cbl(e, null);
                }
            }
            else
                term.push(inflate(infl, { size: su }, cbl));
        }
        else
            cbl('unknown compression type ' + c_1, null);
    };
    for (var i = 0; i < c; ++i) {
        _loop_2(i);
    }
    return tAll;
}
exports.unzip = unzip;
/**
 * Synchronously decompresses a ZIP archive. Prefer using `unzip` for better
 * performance with more than one file.
 * @param data The raw compressed ZIP file
 * @returns The decompressed files
 */
function unzipSync(data) {
    var files = {};
    var e = data.length - 22;
    for (; b4(data, e) != 0x6054B50; --e) {
        if (!e || data.length - e > 65558)
            throw 'invalid zip file';
    }
    ;
    var c = b2(data, e + 8);
    if (!c)
        return {};
    var o = b4(data, e + 16);
    var z = o == 4294967295;
    if (z) {
        e = b4(data, e - 12);
        if (b4(data, e) != 0x6064B50)
            throw 'invalid zip file';
        c = b4(data, e + 32);
        o = b4(data, e + 48);
    }
    for (var i = 0; i < c; ++i) {
        var _a = zh(data, o, z), c_2 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off);
        o = no;
        if (!c_2)
            files[fn] = slc(data, b, b + sc);
        else if (c_2 == 8)
            files[fn] = inflateSync(data.subarray(b, b + sc), new u8(su));
        else
            throw 'unknown compression type ' + c_2;
    }
    return files;
}
exports.unzipSync = unzipSync;

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ ok ]

:: Make Dir ::
 
[ ok ]
:: Make File ::
 
[ ok ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.5 [PHP 8 Update] [24.05.2025] | Generation time: 0.0051 ]--