Viewing file: ImageChops.py (7.13 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
# # The Python Imaging Library. # $Id$ # # standard channel operations # # History: # 1996-03-24 fl Created # 1996-08-13 fl Added logical operations (for "1" images) # 2000-10-12 fl Added offset method (from Image.py) # # Copyright (c) 1997-2000 by Secret Labs AB # Copyright (c) 1996-2000 by Fredrik Lundh # # See the README file for information on usage and redistribution. #
from . import Image
def constant(image, value): """Fill a channel with a given grey level.
:rtype: :py:class:`~PIL.Image.Image` """
return Image.new("L", image.size, value)
def duplicate(image): """Copy a channel. Alias for :py:meth:`PIL.Image.Image.copy`.
:rtype: :py:class:`~PIL.Image.Image` """
return image.copy()
def invert(image): """ Invert an image (channel).
.. code-block:: python
out = MAX - image
:rtype: :py:class:`~PIL.Image.Image` """
image.load() return image._new(image.im.chop_invert())
def lighter(image1, image2): """ Compares the two images, pixel by pixel, and returns a new image containing the lighter values.
.. code-block:: python
out = max(image1, image2)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_lighter(image2.im))
def darker(image1, image2): """ Compares the two images, pixel by pixel, and returns a new image containing the darker values.
.. code-block:: python
out = min(image1, image2)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_darker(image2.im))
def difference(image1, image2): """ Returns the absolute value of the pixel-by-pixel difference between the two images.
.. code-block:: python
out = abs(image1 - image2)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_difference(image2.im))
def multiply(image1, image2): """ Superimposes two images on top of each other.
If you multiply an image with a solid black image, the result is black. If you multiply with a solid white image, the image is unaffected.
.. code-block:: python
out = image1 * image2 / MAX
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_multiply(image2.im))
def screen(image1, image2): """ Superimposes two inverted images on top of each other.
.. code-block:: python
out = MAX - ((MAX - image1) * (MAX - image2) / MAX)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_screen(image2.im))
def soft_light(image1, image2): """ Superimposes two images on top of each other using the Soft Light algorithm
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_soft_light(image2.im))
def hard_light(image1, image2): """ Superimposes two images on top of each other using the Hard Light algorithm
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_hard_light(image2.im))
def overlay(image1, image2): """ Superimposes two images on top of each other using the Overlay algorithm
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_overlay(image2.im))
def add(image1, image2, scale=1.0, offset=0): """ Adds two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0.
.. code-block:: python
out = ((image1 + image2) / scale + offset)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_add(image2.im, scale, offset))
def subtract(image1, image2, scale=1.0, offset=0): """ Subtracts two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0.
.. code-block:: python
out = ((image1 - image2) / scale + offset)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_subtract(image2.im, scale, offset))
def add_modulo(image1, image2): """Add two images, without clipping the result.
.. code-block:: python
out = ((image1 + image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_add_modulo(image2.im))
def subtract_modulo(image1, image2): """Subtract two images, without clipping the result.
.. code-block:: python
out = ((image1 - image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_subtract_modulo(image2.im))
def logical_and(image1, image2): """Logical AND between two images.
Both of the images must have mode "1". If you would like to perform a logical AND on an image with a mode other than "1", try :py:meth:`~PIL.ImageChops.multiply` instead, using a black-and-white mask as the second image.
.. code-block:: python
out = ((image1 and image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_and(image2.im))
def logical_or(image1, image2): """Logical OR between two images.
Both of the images must have mode "1".
.. code-block:: python
out = ((image1 or image2) % MAX)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_or(image2.im))
def logical_xor(image1, image2): """Logical XOR between two images.
Both of the images must have mode "1".
.. code-block:: python
out = ((bool(image1) != bool(image2)) % MAX)
:rtype: :py:class:`~PIL.Image.Image` """
image1.load() image2.load() return image1._new(image1.im.chop_xor(image2.im))
def blend(image1, image2, alpha): """Blend images using constant transparency weight. Alias for :py:func:`PIL.Image.blend`.
:rtype: :py:class:`~PIL.Image.Image` """
return Image.blend(image1, image2, alpha)
def composite(image1, image2, mask): """Create composite using transparency mask. Alias for :py:func:`PIL.Image.composite`.
:rtype: :py:class:`~PIL.Image.Image` """
return Image.composite(image1, image2, mask)
def offset(image, xoffset, yoffset=None): """Returns a copy of the image where data has been offset by the given distances. Data wraps around the edges. If ``yoffset`` is omitted, it is assumed to be equal to ``xoffset``.
:param xoffset: The horizontal distance. :param yoffset: The vertical distance. If omitted, both distances are set to the same value. :rtype: :py:class:`~PIL.Image.Image` """
if yoffset is None: yoffset = xoffset image.load() return image._new(image.im.offset(xoffset, yoffset))
|